Rabu, 26 Januari 2011

Prinsip Dioda - Dioda, Zenner dan LED

Dioda termasuk komponen elektronika yang terbuat dari bahan semikonduktor. Beranjak dari penemuan dioda, para ahli menemukan juga komponen turunan lainnya yang unik.

Dioda

Dioda memiliki fungsi yang unik yaitu hanya dapat mengalirkan arus satu arah saja. Struktur dioda tidak lain adalah sambungan semikonduktor P dan N. Satu sisi adalah semikonduktor dengan tipe P dan satu sisinya yang lain adalah tipe N. Dengan struktur demikian arus hanya akan dapat mengalir dari sisi P menuju sisi N.

Gambar 1 : Simbol dan struktur dioda

Gambar ilustrasi di atas menunjukkan sambungan PN dengan sedikit porsi kecil yang disebut lapisan deplesi (depletion layer), dimana terdapat keseimbangan hole dan elektron. Seperti yang sudah diketahui, pada sisi P banyak terbentuk hole-hole yang siap menerima elektron sedangkan di sisi N banyak terdapat elektron-elektron yang siap untuk bebas merdeka. Lalu jika diberi bias positif, dengan arti kata memberi tegangan potensial sisi P lebih besar dari sisi N, maka elektron dari sisi N dengan serta merta akan tergerak untuk mengisi hole di sisi P. Tentu kalau elektron mengisi hole disisi P, maka akan terbentuk hole pada sisi N karena ditinggal elektron. Ini disebut aliran hole dari P menuju N, Kalau mengunakan terminologi arus listrik, maka dikatakan terjadi aliran listrik dari sisi P ke sisi N.

Gambar 2 : dioda dengan bias maju

Sebalikya apakah yang terjadi jika polaritas tegangan dibalik yaitu dengan memberikan bias negatif (reverse bias). Dalam hal ini, sisi N mendapat polaritas tegangan lebih besar dari sisi P.

Gambar 3 : dioda dengan bias negatif

Tentu jawabanya adalah tidak akan terjadi perpindahan elektron atau aliran hole dari P ke N maupun sebaliknya. Karena baik hole dan elektron masing-masing tertarik ke arah kutup berlawanan. Bahkan lapisan deplesi (depletion layer) semakin besar dan menghalangi terjadinya arus.

Demikianlah sekelumit bagaimana dioda hanya dapat mengalirkan arus satu arah saja. Dengan tegangan bias maju yang kecil saja dioda sudah menjadi konduktor. Tidak serta merta diatas 0 volt, tetapi memang tegangan beberapa volt diatas nol baru bisa terjadi konduksi. Ini disebabkan karena adanya dinding deplesi (deplesion layer). Untuk dioda yang terbuat dari bahan Silikon tegangan konduksi adalah diatas 0.7 volt. Kira-kira 0.2 volt batas minimum untuk dioda yang terbuat dari bahan Germanium.

Gambar 4 : grafik arus dioda

Sebaliknya untuk bias negatif dioda tidak dapat mengalirkan arus, namun memang ada batasnya. Sampai beberapa puluh bahkan ratusan volt baru terjadi breakdown, dimana dioda tidak lagi dapat menahan aliran elektron yang terbentuk di lapisan deplesi.

Zener

Phenomena tegangan breakdown dioda ini mengilhami pembuatan komponen elektronika lainnya yang dinamakan zener. Sebenarnya tidak ada perbedaan sruktur dasar dari zener, melainkan mirip dengan dioda. Tetapi dengan memberi jumlah doping yang lebih banyak pada sambungan P dan N, ternyata tegangan breakdown dioda bisa makin cepat tercapai. Jika pada dioda biasanya baru terjadi breakdown pada tegangan ratusan volt, pada zener bisa terjadi pada angka puluhan dan satuan volt. Di datasheet ada zener yang memiliki tegangan Vz sebesar 1.5 volt, 3.5 volt dan sebagainya.

Gambar 5 : Simbol Zener

Ini adalah karakteristik zener yang unik. Jika dioda bekerja pada bias maju maka zener biasanya berguna pada bias negatif (reverse bias).

LED

LED adalah singkatan dari Light Emiting Dioda, merupakan komponen yang dapat mengeluarkan emisi cahaya.LED merupakan produk temuan lain setelah dioda. Strukturnya juga sama dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang sambungan P-N juga melepaskan energi berupa energi panas dan energi cahaya. LED dibuat agar lebih efisien jika mengeluarkan cahaya. Untuk mendapatkna emisi cahaya pada semikonduktor, doping yang pakai adalah galium, arsenic dan phosporus. Jenis doping yang berbeda menghasilkan warna cahaya yang berbeda pula.

Gambar 6 : Simbol LED

Pada saat ini warna-warna cahaya LED yang banyak ada adalah warna merah, kuning dan hijau.LED berwarna biru sangat langka. Pada dasarnya semua warna bisa dihasilkan, namun akan menjadi sangat mahal dan tidak efisien. Dalam memilih LED selain warna, perlu diperhatikan tegangan kerja, arus maksimum dan disipasi daya-nya. Rumah (chasing) LED dan bentuknya juga bermacam-macam, ada yang persegi empat, bulat dan lonjong.

Aplikasi

Dioda banyak diaplikasikan pada rangkaian penyerah arus (rectifier) power suplai atau konverter AC ke DC. Dipasar banyak ditemukan dioda seperti 1N4001, 1N4007 dan lain-lain. Masing-masing tipe berbeda tergantung dari arus maksimum dan juga tegangan breakdwon-nya. Zener banyak digunakan untuk aplikasi regulator tegangan (voltage regulator). Zener yang ada dipasaran tentu saja banyak jenisnya tergantung dari tegangan breakdwon-nya. Di dalam datasheet biasanya spesifikasi ini disebut Vz (zener voltage) lengkap dengan toleransinya, dan juga kemampuan dissipasi daya.

Gambar 7 : LED array

LED sering dipakai sebagai indikator yang masing-masing warna bisa memiliki arti yang berbeda. Menyala, padam dan berkedip juga bisa berarti lain. LED dalam bentuk susunan (array) bisa menjadi display yang besar. Dikenal juga LED dalam bentuk 7 segment atau ada juga yang 14 segment. Biasanya digunakan untuk menampilkan angka numerik dan alphabet.

Read More ->>

Kapasitor

Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif, karena terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini "tersimpan" selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif dan negatif di awan. Prinsip kapasitor

Gambar 1 : prinsip dasar kapasitor

Kapasitansi

Kapasitansi didefenisikan sebagai kemampuan dari suatu kapasitor untuk dapat menampung muatan elektron. Coulombs pada abad 18 menghitung bahwa 1 coulomb = 6.25 x 1018 elektron. Kemudian Michael Faraday membuat postulat bahwa sebuah kapasitor akan memiliki kapasitansi sebesar 1 farad jika dengan tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulombs. Dengan rumus dapat ditulis :

Q = CV …………….(1)

Q = muatan elektron dalam C (coulombs)

C = nilai kapasitansi dalam F (farads)

V = besar tegangan dalam V (volt)

Dalam praktek pembuatan kapasitor, kapasitansi dihitung dengan mengetahui luas area plat metal (A), jarak (t) antara kedua plat metal (tebal dielektrik) dan konstanta (k) bahan dielektrik. Dengan rumusan dapat ditulis sebagai berikut :

C = (8.85 x 10-12) (k A/t) ...(2)

Berikut adalah tabel contoh konstanta (k) dari beberapa bahan dielektrik yang disederhanakan.

Tabel-1 : Konstanta dielektrik bahan kapasitor

Tabel konstanta dielektrik bahan kapasitor

Tabel konstanta dielektrik bahan kapasitor

Untuk rangkain elektronik praktis, satuan farads adalah sangat besar sekali. Umumnya kapasitor yang ada di pasar memiliki satuan uF (10-6 F), nF (10-9 F) dan pF (10-12 F). Konversi satuan penting diketahui untuk memudahkan membaca besaran sebuah kapasitor. Misalnya 0.047uF dapat juga dibaca sebagai 47nF, atau contoh lain 0.1nF sama dengan 100pF.

Tipe Kapasitor

Kapasitor terdiri dari beberapa tipe, tergantung dari bahan dielektriknya. Untuk lebih sederhana dapat dibagi menjadi 3 bagian, yaitu kapasitor electrostatic, electrolytic dan electrochemical.

Kapasitor Electrostatic

Kapasitor electrostatic adalah kelompok kapasitor yang dibuat dengan bahan dielektrik dari keramik, film dan mika. Keramik dan mika adalah bahan yang popular serta murah untuk membuat kapasitor yang kapasitansinya kecil. Tersedia dari besaran pF sampai beberapa uF, yang biasanya untuk aplikasi rangkaian yang berkenaan dengan frekuensi tinggi. Termasuk kelompok bahan dielektrik film adalah bahan-bahan material seperti polyester (polyethylene terephthalate atau dikenal dengan sebutan mylar), polystyrene, polyprophylene, polycarbonate, metalized paper dan lainnya.

Mylar, MKM, MKT adalah beberapa contoh sebutan merek dagang untuk kapasitor dengan bahan-bahan dielektrik film. Umumnya kapasitor kelompok ini adalah non-polar.

Kapasitor Electrolytic

Kelompok kapasitor electrolytic terdiri dari kapasitor-kapasitor yang bahan dielektriknya adalah lapisan metal-oksida. Umumnya kapasitor yang termasuk kelompok ini adalah kapasitor polar dengan tanda + dan - di badannya. Mengapa kapasitor ini dapat memiliki polaritas, adalah karena proses pembuatannya menggunakan elektrolisa sehingga terbentuk kutup positif anoda dan kutup negatif katoda.

Telah lama diketahui beberapa metal seperti tantalum, aluminium, magnesium, titanium, niobium, zirconium dan seng (zinc) permukaannya dapat dioksidasi sehingga membentuk lapisan metal-oksida (oxide film). Lapisan oksidasi ini terbentuk melalui proses elektrolisa, seperti pada proses penyepuhan emas. Elektroda metal yang dicelup kedalam larutan electrolit (sodium borate) lalu diberi tegangan positif (anoda) dan larutan electrolit diberi tegangan negatif (katoda). Oksigen pada larutan electrolyte terlepas dan mengoksidai permukaan plat metal. Contohnya, jika digunakan Aluminium, maka akan terbentuk lapisan Aluminium-oksida (Al2O3) pada permukaannya.

Gambar-2 : Prinsip kapasitor Elco

Dengan demikian berturut-turut plat metal (anoda), lapisan-metal-oksida dan electrolyte(katoda) membentuk kapasitor. Dalam hal ini lapisan-metal-oksida sebagai dielektrik. Dari rumus (2) diketahui besar kapasitansi berbanding terbalik dengan tebal dielektrik. Lapisan metal-oksida ini sangat tipis, sehingga dengan demikian dapat dibuat kapasitor yang kapasitansinya cukup besar.

Karena alasan ekonomis dan praktis, umumnya bahan metal yang banyak digunakan adalah aluminium dan tantalum. Bahan yang paling banyak dan murah adalah Aluminium. Untuk mendapatkan permukaan yang luas, bahan plat Aluminium ini biasanya digulung radial. Sehingga dengan cara itu dapat diperoleh kapasitor yang kapasitansinya besar. Sebagai contoh 100uF, 470uF, 4700uF dan lain-lain, yang sering juga disebut kapasitor elco.


Bahan electrolyte pada kapasitor Tantalum ada yang cair tetapi ada juga yang padat. Disebut electrolyte padat, tetapi sebenarnya bukan larutan electrolit yang menjadi elektroda negatif-nya, melainkan bahan lain yaitu manganese-dioksida. Dengan demikian kapasitor jenis ini bisa memiliki kapasitansi yang besar namun menjadi lebih ramping dan mungil. Selain itu karena seluruhnya padat, maka waktu kerjanya (lifetime) menjadi lebih tahan lama. Kapasitor tipe ini juga memiliki arus bocor yang sangat kecil Jadi dapat dipahami mengapa kapasitor Tantalum menjadi relatif mahal.


Kapasitor Electrochemical

Satu jenis kapasitor lain adalah kapasitor electrochemical. Termasuk kapasitor jenis ini adalah batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular.

Membaca Kapasitansi

Pada kapasitor yang berukuran besar, nilai kapasitansi umumnya ditulis dengan angka yang jelas. Lengkap dengan nilai tegangan maksimum dan polaritasnya. Misalnya pada kapasitor elco dengan jelas tertulis kapasitansinya sebesar 22uF/25v.

Kapasitor yang ukuran fisiknya mungil dan kecil biasanya hanya bertuliskan 2 (dua) atau 3 (tiga) angka saja. Jika hanya ada dua angka satuannya adalah pF (pico farads). Sebagai contoh, kapasitor yang bertuliskan dua angka 47, maka kapasitansi kapasitor tersebut adalah 47 pF.

Jika ada 3 digit, angka pertama dan kedua menunjukkan nilai nominal, sedangkan angka ke-3 adalah faktor pengali. Faktor pengali sesuai dengan angka nominalnya, berturut-turut 1 = 10, 2 = 100, 3 = 1.000, 4 = 10.000 dan seterusnya. Misalnya pada kapasitor keramik tertulis 104, maka kapasitansinya adalah 10 x 10.000 = 100.000pF atau = 100nF. Contoh lain misalnya tertulis 222, artinya kapasitansi kapasitor tersebut adalah 22 x 100 = 2200 pF = 2.2 nF.

Selain dari kapasitansi ada beberapa karakteristik penting lainnya yang perlu diperhatikan. Biasanya spesifikasi karakteristik ini disajikan oleh pabrik pembuat didalam datasheet. Berikut ini adalah beberapa spesifikasi penting tersebut.

Tegangan Kerja (working voltage)

Tegangan kerja adalah tegangan maksimum yang diijinkan sehingga kapasitor masih dapat bekerja dengan baik. Para elektro- mania barangkali pernah mengalami kapasitor yang meledak karena kelebihan tegangan. Misalnya kapasitor 10uF 25V, maka tegangan yang bisa diberikan tidak boleh melebihi 25 volt dc. Umumnya kapasitor-kapasitor polar bekerja pada tegangan DC dan kapasitor non-polar bekerja pada tegangan AC.


Temperatur Kerja

Kapasitor masih memenuhi spesifikasinya jika bekerja pada suhu yang sesuai. Pabrikan pembuat kapasitor umumnya membuat kapasitor yang mengacu pada standar popular. Ada 4 standar popular yang biasanya tertera di badan kapasitor seperti C0G (ultra stable), X7R (stable) serta Z5U dan Y5V (general purpose). Secara lengkap kode-kode tersebut disajikan pada table berikut.

Tabel-2 : Kode karakteristik kapasitor kelas I

Kode karakteristik kapasitor kelas I

Tabel-3 : Kode karakteristik kapasitor kelas II dan III

Kode karakteristik kapasitor kelas II dan III

Toleransi

Seperti komponen lainnya, besar kapasitansi nominal ada toleransinya. Tabel diatas menyajikan nilai toleransi dengan kode-kode angka atau huruf tertentu. Dengan table di atas pemakai dapat dengan mudah mengetahui toleransi kapasitor yang biasanya tertera menyertai nilai nominal kapasitor. Misalnya jika tertulis 104 X7R, maka kapasitasinya adalah 100nF dengan toleransi +/-15%. Sekaligus dikethaui juga bahwa suhu kerja yang direkomendasikan adalah antara -55Co sampai +125Co (lihat tabel kode karakteristik)

Insulation Resistance (IR)

Walaupun bahan dielektrik merupakan bahan yang non-konduktor, namun tetap saja ada arus yang dapat melewatinya. Artinya, bahan dielektrik juga memiliki resistansi. walaupun nilainya sangat besar sekali. Phenomena ini dinamakan arus bocor DCL (DC Leakage Current) dan resistansi dielektrik ini dinamakan Insulation Resistance (IR). Untuk menjelaskan ini, berikut adalah model rangkaian kapasitor.

model rangkaian kapasitor

Gambar-3 : Model rangkaian kapasitor

C = Capacitance

ESR = Equivalent Series Resistance

L = Inductance

IR = Insulation Resistance

Jika tidak diberi beban, semestinya kapasitor dapat menyimpan muatan selama-lamanya. Namun dari model di atas, diketahui ada resitansi dielektrik IR(Insulation Resistance) yang paralel terhadap kapasitor. Insulation resistance (IR) ini sangat besar (MOhm). Konsekuensinya tentu saja arus bocor (DCL) sangat kecil (uA). Untuk mendapatkan kapasitansi yang besar diperlukan permukaan elektroda yang luas, tetapi ini akan menyebabkan resistansi dielektrik makin kecil. Karena besar IR selalu berbanding terbalik dengan kapasitansi (C), karakteristik resistansi dielektrik ini biasa juga disajikan dengan besaran RC (IR x C) yang satuannya ohm-farads atau megaohm-micro farads.

Dissipation Factor (DF) dan Impedansi (Z)

Dissipation Factor adalah besar persentasi rugi-rugi (losses) kapasitansi jika kapasitor bekerja pada aplikasi frekuensi. Besaran ini menjadi faktor yang diperhitungkan misalnya pada aplikasi motor phasa, rangkaian ballast, tuner dan lain-lain. Dari model rangkaian kapasitor digambarkan adanya resistansi seri (ESR) dan induktansi (L). Pabrik pembuat biasanya meyertakan data DF dalam persen. Rugi-rugi (losses) itu didefenisikan sebagai ESR yang besarnya adalah persentasi dari impedansi kapasitor Xc. Secara matematis di tulis sebagai berikut :

Faktor dissipasi

Gambar-4 : Faktor dissipasi

Dari penjelasan di atas dapat dihitung besar total impedansi (Z total) kapasitor adalah :

Impedansi Z

Gambar-5 : Impendansi Z

Karakteristik respons frekuensi sangat perlu diperhitungkan terutama jika kapasitor bekerja pada frekuensi tinggi. Untuk perhitungan respons frekuensi dikenal juga satuan faktor qualitas Q (quality factor) yang tak lain sama dengan 1/DF.

The --end--

Read More ->>

Resistor

Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak, emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan-bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator. Bagaimana prinsip konduksi, dijelaskan pada artikel tentang semikonduktor.

Resistor KarbonResistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon . Dari hukum Ohms diketahui, resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Satuan resistansi dari suatu resistor disebut Ohm atau dilambangkan dengan simbol W (Omega). Tipe resistor yang umum adalah berbentuk tabung dengan dua kaki tembaga di kiri dan kanan. Pada badannya terdapat lingkaran membentuk gelang kode warna untuk memudahkan pemakai mengenali besar resistansi tanpa mengukur besarnya dengan Ohmmeter. Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA (Electronic Industries Association) seperti yang ditunjukkan pada tabel berikut. Waktu penulis masuk pendaftaran kuliah elektro, ada satu test yang harus dipenuhi yaitu diharuskan tidak buta warna. Belakangan baru diketahui bahwa mahasiswa elektro wajib untuk bisa membaca warna gelang resistor (barangkali).

Tabel - 1 : nilai warna gelang

Tabel nilai warna pada resistorResistansi dibaca dari warna gelang yang paling depan ke arah gelang toleransi berwarna coklat, merah, emas atau perak. Biasanya warna gelang toleransi ini berada pada badan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan warna gelang yang pertama agak sedikit ke dalam. Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resistor tersebut. Kalau anda telah bisa menentukan mana gelang yang pertama selanjutnya adalah membaca nilai resistansinya.

Jumlah gelang yang melingkar pada resistor umumnya sesuai dengan besar toleransinya. Biasanya resistor dengan toleransi 5%, 10% atau 20% memiliki 3 gelang (tidak termasuk gelang toleransi). Tetapi resistor dengan toleransi 1% atau 2% (toleransi kecil) memiliki 4 gelang (tidak termasuk gelang toleransi). Gelang pertama dan seterusnya berturut-turut menunjukkan besar nilai satuan, dan gelang terakhir adalah faktor pengalinya.

Misalnya resistor dengan gelang kuning, violet, merah dan emas. Gelang berwarna emas adalah gelang toleransi. Dengan demikian urutan warna gelang resitor ini adalah, gelang pertama berwarna kuning, gelang kedua berwana violet dan gelang ke tiga berwarna merah. Gelang ke empat tentu saja yang berwarna emas dan ini adalah gelang toleransi. Dari tabel-1 diketahui jika gelang toleransi berwarna emas, berarti resitor ini memiliki toleransi 5%. Nilai resistansisnya dihitung sesuai dengan urutan warnanya. Pertama yang dilakukan adalah menentukan nilai satuan dari resistor ini. Karena resitor ini resistor 5% (yang biasanya memiliki tiga gelang selain gelang toleransi), maka nilai satuannya ditentukan oleh gelang pertama dan gelang kedua. Masih dari tabel-1 diketahui gelang kuning nilainya = 4 dan gelang violet nilainya = 7. Jadi gelang pertama dan kedua atau kuning dan violet berurutan, nilai satuannya adalah 47. Gelang ketiga adalah faktor pengali, dan jika warna gelangnya merah berarti faktor pengalinya adalah 100. Sehingga dengan ini diketahui nilai resistansi resistor tersebut adalah nilai satuan x faktor pengali atau 47 x 100 = 4.7K Ohm dan toleransinya adalah 5%.

Spesifikasi lain yang perlu diperhatikan dalam memilih resitor pada suatu rancangan selain besar resistansi adalah besar watt-nya. Karena resistor bekerja dengan dialiri arus listrik, maka akan terjadi disipasi daya berupa panas sebesar W=I2R watt. Semakin besar ukuran fisik suatu resistor bisa menunjukkan semakin besar kemampuan disipasi daya resistor tersebut.

Umumnya di pasar tersedia ukuran 1/8, 1/4, 1, 2, 5, 10 dan 20 watt. Resistor yang memiliki disipasi daya 5, 10 dan 20 watt umumnya berbentuk kubik memanjang persegi empat berwarna putih, namun ada juga yang berbentuk silinder. Tetapi biasanya untuk resistor ukuran jumbo ini nilai resistansi dicetak langsung dibadannya, misalnya 100W5W.

Saya pernah menanyakan pertanyaan ringan kepada mereka yang hadir pada seminar elektronika di salah satu perguruan tinggi di Jakarta. “siapa yang tidak bisa membaca kode gelang resistor, tunjuk jari?” . Awalnya saya berpikir tidak ada diantara mereka yang akan mengacungkan jarinya. Tapi, ada beberapa dari mereka dengan sedikit malu-malu mengacungkan jarinya. Saya tercengang dan diam beberapa saat. Saya baru sadar, meskipun tiap hari mereka selalu berkutat dengan elektronika, banyak hal-hal kecil dan sederhana yang mereka lupakan.

Pada tulisan kali ini, saya berusaha untuk menjelaskan pengetahuan dasar, mudah dan sederhana untuk mereka yang punya hoby elektronika, tentang cara mudah membaca gelang warna pada resistor :


Resitor dengan 4 gelang:

Lazimnya gelang resistor terdapat 4 gelang kode yang umumnya digunakan untuk presisi rendah dengan toleransi 5%, 10% dan 20%. Gelang pertama dan kedua mewakili angka resistor. Gelang ketiga mengindikasi perkalian (multiplier) berapa ‘nol’ yang ditambahkan. Jika multiplier band adalah emas (gold) atau perak (silver) kemudian desimal digeser ke kiri satu atau dua (dibagi dengan 10 or 100). Gelang toleransi (tolerance band) deviasi dari nilai spesifik, biasanya terdapat jarak dari gelang lain.

Sebagai contoh, untuk resistor dengan nilai 560 ohm, 5% maka gelang warnanya adalah hijau, biru, coklat dan emas. Penjelasan: Hijau dan biru mewakili angka (56); sedangkan coklat adalah pengali (multiplier) (10) dan emas adalah toleransi (5%). Sedemikian sehingga nilainya 56*10 = 560.

Jika gelang ke tiga diubah ke warna merah, maka pengali (multiplier) akan menjadi 100, sehingga nilainya 56×100 = 5600 ohms = 5.6 k ohms. Jika gelang pengali (multiplier band) adalah emas atau perak, kemudian desimal poin akan digeser ke kiri satu atau dua tempat (dibagi dengan 10 atau 100). Sebagai contoh, sebuah resistor dengan gelang hijau, biru, perak dan emas mempunyai nilai 56*0.01 = 0.56.

Catatan: 20% resistors hanya mempunyai 3 gelang – artinya, gelang toleransi (gelang ke empat tanpa warna).

Resitor dengan 5 gelang:

Resistor dengan gelang seperti ini digunakan untuk rangkaian elektronika dengan presisi tinggi, resistor dengan presisi 2%, 1% atau bertoleransi lebih rendah. Cara membaca gelang mirip dengan sistem sebelumnya (4 gelang); hanya saja ada perbedaan nomor dari angka. Gelang pertama, kedua dan ketiga mewakili nilai angka, gelang ke empat adalah pengali (multiplier) dan gelang ke lima adalah toleransi.

Berikut adalah standar tabel kode warna resistor:

Warna Gelang ke-1 Gelang ke-2 Gelang ke-3 * Pengali Toleransi Koefisien Suhu Fail Rate
Hitam 0 0 0 ×100


Coklat 1 1 1 ×101 ±1% (F) 100 ppm/K 1%
Merah 2 2 2 ×102 ±2% (G) 50 ppm/K 0.1%
Jingga 3 3 3 ×103
15 ppm/K 0.01%
Kuning 4 4 4 ×104
25 ppm/K 0.001%
Hijau 5 5 5 ×105 ±0.5% (D)

Biru 6 6 6 ×106 ±0.25%(C)

Ungu 7 7 7 ×107 ±0.1% (B)

Abu-abu 8 8 8 ×108 ±0.05% (A)

Putih 9 9 9 ×109


Emas


×0.1 ±5% (J)

Perak


×0.01 ±10% (K)

Tanpa Warna



±20% (M)

* Gelang ke-3 hanya untuk 5-band resistors

Beberapa resistor mempunyai penambahan gelang – sangat jarang ditemui – indikasi reliabilitas atau koefisien suhu (temperature coefficient).

Pada gelang reliability band, spesifikasi failure rate per 1000 jam (dengan asumsi bahwa beban penuh diberikan pada resistor). Maka temperature coefficient dapat juga ditandai pada resistors 1% resistor (contoh +/-100 ppm akan berubah temperatur 50 derajat Celcius yang menyebabkan berubah nilai resistor sebesar 1%). Pengkodean seperti ini mungkin membingungkan tetapi bagi yang hobi elektronika atau praktisi akan lebih mudah tanpa harus mengingat kode warna gelang resistor.

Cara yang paling gampang bagi yang awam cukup dengan mengukur resistor dengan multitester digital berkalibrasi (akurat); biasa dipakai di industri PCBA, maka nilai angka akan muncul di layar monitor.

Contoh:

Resistor dengan 4 gelang:

Hijau, Biru, Merah, toleransi Perak: 56*100 = 5.6 kohms, dengan tol 10%

Coklat, Hitam, Jingga, Emas : 10*1000 = 10000 ohms (or 10K ohms), dengan tol 5%

Merah, Merah, Coklat, Perak : 22*10 = 220 ohms (220 ohms), dengan tol 10%

Resistor dengan 5 gelang:

Biru, Coklat, Putih, Coklat, Merah: 619*10 = 6190 ohms (6.19K ohms), dengan tol 2%

Merah, Merah, Coklat, Hitam, Coklat: 221*1 = 221 ohms, dengan tol 1%

Coklat, Hitam, Hitam, Merah, Coklat: 100*100 = 10000 ohms (10.0K), dengan tol 1%

Biar gampang mengingat kode warnanya, cukup hafalkan “Hi-Co-Me-Ji-Ku-Hi-Bi-U-A-Pu”

Gito Caranyaaa

Read More ->>

Selasa, 25 Januari 2011

Cara menggunakan AVO meter

1. AVO meter atau multitester.

mungkin bagi rekan-rekan teknisi sudah mengenal dengan istilah AVO meter, atau bisa juga kita sebut dengan multitester atau multimeter, kalo gak salah AVO meter itu singkatan dari AVO (Ampere Volt Ohm), yaitu alat untuk mengukur suatu arus atau tegangan yang memiliki satuan atau ukuran Ampere, Volt, dan Ohm. kalo belum kenal kita bisa melihat gambar di bawah ini.


2. Bagian-bagian pada AVO meter.

Perhatikan pada gambar 3. terdapat 4 bagian kalibrasi yaitu Ohm (?), DCV (Direct Current Voltase), ACV (Alternatif Current Voltase), dan DCmA (Direct Current miliAmpere).

a. Ohm (?)

Biasanya untuk mengukur HP dalam keadaan tidak dialiri arus listrik baik dari baterai ataupun dari PS (Power Suplay) contohnya untuk mengukur jalur pada sircuit, apakah jalur tersebut ada yang putus atau tidak, atau mengukur mic, buzzer, vibra, dll. Namun bisa juga digunakan untuk mengukur besarnya hambatan pada sircuit/rangkaian, tentunya ketika dialiri arus listrik.

b. DCV (direct Curent Voltase).

Tegangan DC atau tegangan searah adalah tegangan yang berada pada kondisi satu arah saja ketika menghantarkan arus listrik pada sebuah rangkain yang memiliki kutub positif dan negatif. sumber tegangan DC antaralain Baterai dan Accu )aki). Biasanya pada HP untuk mengukur HP dalam kondisi terhubung dengan baterai atau PS (Power Suplay), yang sering kita gunakan biasanya pada kalibrasi 10 yaitu seperti pada gambar 3. yaitu untuk mengukur tegangan (V/Volt) yang nilainya dibwah 10 volt, sedangkan yang 2.5 biasa untuk mengukur Vcore dan VIO karena lebih akurat. meskipun pada kalibrasi 10 anda juga masih dapat membaca tegangan yang berada di bawah 2.5, dan yang 50 biasanya untuk mengukur Vled LCD HP tertentu yang nilainya lebih besar dari 10 volt. yang lain biasanya tidak digunakan dalam service HP.

c. ACV (Alternatif Current Voltase).

Tegangan AC atau tegangan bolak-balik adalah tegangan yang menghantarkan arus listrik secara dua arah, yaitu pada sisi fasa dan massa (ground), contoh tegangan AC adalah tegangan listrik rumah (220 V atau 110 V). Pada bagian ini sangat jarang digunakan dalamservice HP.

d. DCmA (Direct Current miliAmpere).

Juga sangat jarang digunakan dalam sevice HP, kita abaikan saja biar tidak tambah bingung.


Yang akan dibahas kali ini yaitu hanya Ohm (?) dan DCV saja.

- Ohm (?)

Yang umum kita gunakan pada service HP yaitu pada kalibrasi x1 dan x10, namun sebelum anda menggunakannya baik pada kalibrasi x1 atau x10 untuk mengukur setiap kerusakan pada HP, sebaiknya anda standarkan dulu dengan cara menghubungkan probe merah (+) dengan probe hitam (-) dan jarum harus bergerak ke angka 0 (perhatikan pada gambar 2, tulisan atau angka-angka yang berwarna biru paling atas di sebelah kanan, ada angka 0), jika tidak pada angka 0 atau melebihinya, anda dapat memutar tombol diatas tulisan O ? ADJ (perhatikan gambar 3), bisa diputar ke kiri atau ke kanan.
cara menggunakannya, jika anda menggunakan x1 ?, nilai yang harus dibaca adalah angka 0 paling atas sebelah kanan lalu ke kiri 1, 2, 3, dst sampai 1k. jadi dengan menggunakan kalibrasi X1 ? nilai maksimal yang dapat anda baca adalah 1 kilo ohm (1000 ohm), sedangkan jika anda menggunakan kalibrasi X10 ? nilai maksimalnya yaitu 1 koli ohm dikalikan 10 atau sama dengan 10 kilo ohm.
X1 ? dan X10 ? umumnya digunakan untuk mengukur jalur dan fuse (jika jalur dan fuse tidak putus maka jarum harus menunjuk ke angka 0), speaker, mic, buzzer, vibra, dioda, dan transistor.
untuk R (resistor) yang nilainya lebih dari 10 kilo ohm anda harus menggunakan kalibrasi X1K ? atau X10K ?.
untuk C (capasitor) akan lebih baik jika anda mencabut dahulu C yang akan anda ukur dari PCB, umumnya C yang masih bagus ketika di ukur jarum akan bergerak menunjukkan nilai tertentu dan kembali lagi kekiri, jika tidak kembali berarti C rusak.
Untuk mengukur Dioda yang dilepas dari rangkaiannya jarum hanya bergerak sat arah, jika probenya dibalik dan jarum masih bergerak, brati dioda bocor atau rusak.


-DCV (Direct Current Voltase)

Dengan kalibrasi 10 seperti yang anda lihat pada gambar 3, angka yang anda baca adalah pada baris 2 dari atas pada gambar 2. yaitu yang ada tulisan DCVA 0, 2, 4, 6, 8, 10. dan jika pengukuran jarum berada di antara angka 2 dan 4, berati kurang-lebihnya 3 volt. dan untuk meng-standarkan atau meng-0 kan anda tidak perlu menghubungkan probe nya, cukup dengan memutar saklar pada bagian bawah-tengah dengan obeng pipih (obeng min) lihat pada gambar 2 . untuk mengkur baterai HP yang pada umum nya 3.7 volt, anda harus memutar pada kalibrasi 10, dan probe hitam (-) anda hubungkan pada kutub negativ (-) baterai dan probe merah (+) anda hubungkan pada kutub positif (+) baterai, maka jarum akan menunjukkan mendekati angka 4, jika kurang dari 3.5 maka baterai tersebut rusak (suak).
untuk mengukur tegangan pada HP, terlebih dahulu HP yang akan anda ukur tegangannya dihubungkan dengan baterai atau PS (power suplay), lalu probe hitam dari AVOmeter dapat anda hubungkan ke kutub negatif (-) kabel hitam dari PS (power suplay) dan tekan tombol on/off dari HP, terus ukur tegangan yang ingin anda ukur pada rangkaian HP dengan menggunakan kabel merah (+) dari AVO meter.

kurang lebihnya begitu cara menggunakan AVO meter.

mudah-mudahan ini dapat berguna bagi rekan-rekan teknisi.

apabila ada kekurangan mohon dikoreksi lagi dan silahkan ditambahkan.
Read More ->>

Rabu, 19 Januari 2011

Pembagian tegangan

Pembagian tegangan



Kebanyakan dari project elektronika yang dibuat baik itu dengan sensor yang digunakan menggunakan rangkaian pembagi tegangan ditunjukkan pada gambar. Dalam pembagi tegangan, tegangan yang diukur pada titik yang sama dari dua resistor, Vout, adalah fungsi dari tegangan input, Vin (5 Volts dalam kasus ini), dan nilai-nilai dari dua resistor, R1 dan R2.

Tegangan ini dapat dihitung menggunakan Hukum Ohm, V = I × R.
Saat ini, tegangan mengalir melalui rangkaian yang ditunjukkan dalam diagram, adalah Vin / R1 + R2 (dihitung dengan menggunakan aturan bahwa resistansi seri tambahkan). Kemudian Vout, jatuh tegangan pada R2, adalah R2 × i, yang menghasilkan hasil:

Vout = Vin (R2 / R1 + R2)

Dalam aplikasi, misal R1 mempunyai nilai tetap atau konstan (seperti yang ditunjukkan pada gambar, sedangkan R2 adalah variabel resistansi yang dihasilkan oleh sensor. Vin adalah tegangan positif pasokan, tetap pada Vin 5 volt. Dengan demikian sinyal Vout dapat langsung dihitung dari R2, maka sensor resistif. Dari melihat persamaan, mudah untuk melihat bahwa jika R2 besar sehubungan dengan R1, tegangan keluaran akan menjadi besar, dan jika R2 kecil sehubungan dengan R1, tegangan keluaran akan menjadi kecil. Minimum dan nilai-nilai tegangan maksimum yang mungkin adalah 0 dan 5 Volt.


Soal !

Diketahui :

V input = 5V
R2 trimpot = 10 ohm
R1 fixed = 15 ohm
Ditanya : V out ..... ?

Jawab :

Vout = Vin (R2 / R1 + R2)

= 5 (10/ 15+10) = 2 V


Saturday, December 19, 2009

Power Supply 12 Volt - Praktek Basic


12 v power supply dengan dioda zener

Sirkuit ini di atas menggunakan dioda zener 13 volt, D2 yang memberikan tegangan regulasi. Dengan perkiraan 0,7 Volts transistor akan cut off pada b-e, meninggalkan arus yang lebih tinggi 12,3 Volt output. Rangkaian ini dapat pasokan beban hingga 500 rangkaian mA. Sehingga outputan power supply menggunakkan pembatas tegangan menggunakkan dioda zener dan transistor sebagai pengaman.



Tanpa menggunakkan dioda zener tetapi menggunakkan ic regulator, sekilas bentuknya seperti transistor tetapi berbeda. 7812 untuk regulator 12 v positif dan 7912 untuk keluaran 12v negatif, jangan sampai salah memasangnya.
Read More ->>
Diberdayakan oleh Blogger.